Analisis dan Optimasi 3D Print Material Carbon Fiber Pla Menggunakan Metode Taguchi-Gra
DOI:
https://doi.org/10.33504/jitt.v2i1.180Keywords:
3D printing, carbon fyber, dimensional accuracy, surface roughness, optimizationAbstract
Technology is evolving, and so is the manufacturing process in the industrial world. One technology that is widely used in making products with ideal dimensions is 3D printing. One of the widely used 3D printing methods is Fused Deposition Modeling (FDM). The working principle of FDM is to extrude thermoplastic filaments through a heated nozzle and print layer by layer. With the development of technology, the filaments used in 3D printing also vary. Carbon Fyber is one of the most popular materials in the industry due to its strength and durability. This study was conducted to find the optimal combination of nozzle temperature, layer height, and print speed parameters for dimensional accuracy and surface roughness on Carbon Fyber filament products. The process parameters used in this study are nozzle temperature, layer height, and print speed. The nozzle temperatures used were 195°C, 210°C, and 225°C. The layer height variations used were 0.15mm, 0.20mm, and 0.25mm. Meanwhile, the print speed is 70%, 85%, and 100%. The parameters will be arranged based on the orthogonal matrix L27(33) with interactions between parameters. Response parameters used are surface roughness and dimensional accuracy. From this study it can be concluded that the parameter that has the most influence on both responses is layer height. Parameter optimization for Carbon Fyber filament products can use the parameters of nozzle temperature 195°C, layer height 0.20mm, and print speed 85%.
Downloads
References
A. W. Gebisa and H. G. Lemu, “Influence of 3D printing FDM process parameters on tensile property of ultem 9085,” Procedia Manuf., vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047.
I. Apriansyah, A. Zamheri, and F. Arifin, “Peningkatan akurasi dimensi dan tingkat kekerasan pada fillamen esteel dengan pendekatan metode Taguchi,” Mach. J. Teknol. Terap., vol. 2, no. 1, pp. 1–7, 2021, [Online]. Available: https://jurnal.polsri.ac.id/index.php/machinery/article/view/2150/1379
Y. B. Pratama, “Analisis Kekasaran Permukaan Proses Mesin 3D Printing pada Filamen ST-PLA Menggunakan Metode Taguchi,” Tugas akhir, p. POLITEKNIK MANUFAKTUR, BANGKA BELITUNG, 2021.
B. Sugiantoro, Rusnaldy, and S. A. Wijayanto, “Optimasi Parameter Proses Milling Terhadap Kualitas Hasil Permesinan Alumunium Dengan Metode Taguchi,” J. TRAKSI, vol. 14, no. 1, pp. 42–57, 2014.
I. Taufik, H. S. Budiono, H. Herianto, and D. Andriyansyah, “[Influence of Printing Speed to Roughness Products of Additive Manufacturing Using Polylactic Acid Filament],” J. Mech. Eng., vol. 4, no. 2, pp. 15–20, 2020, [Online]. Available: https://jurnal.untidar.ac.id/index.php/mechanical/article/view/3412/1649
B. Wiro Karuniawan, F. Rachman, and A. Aris Setiawan, “Optimasi Parameter Mesin Fused Deposition Modelling (FDM) Terhadap Kekasaran Permukaan Produk Menggunakan Metode Taguchi.” 2019.
H. Hasdiansah, M. Masdani, I. Feriadi, and ..., “Optimasi Parameter Proses Terhadap Akurasi Dimensi Pla Food Grade Menggunakan Metode Taguchi,” Pros. Semin. Nas. NCIET Vol.1 A175-A186, vol. 1, pp. 175–186, 2020, [Online]. Available: http://conf.nciet.id/index.php/nciet/article/view/150%0Ahttp://conf.nciet.id/index.php/nciet/article/download/150/231
M. Lestari, Subkhan, and Pristiansyah, “Prosiding Seminar Nasional Inovasi Teknologi Terapan Pengaruh Parameter Proses 3d Printing Terhadap Akurasi Dimensi Filament PETG (Polyethylene terephthalate Gylacol),” Pros. Semin. Nas. Inov. Teknol. Terap. 2021, vol. 3D printin, pp. 361–367, 2022.
L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique,” Procedia CIRP, vol. 28, pp. 82–87, 2015, doi: 10.1016/j.procir.2015.04.014.
S. Valvez, P. Santos, J. M. Parente, M. P. Silva, and P. N. B. Reis, “3D printed continuous carbon fiber reinforced PLA composites: A short review,” Procedia Struct. Integr., vol. 25, no. 2019, pp. 394–399, 2020, doi: 10.1016/j.prostr.2020.04.056.
S. Wickramasinghe, T. Do, and P. Tran, “FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments,” Polymers (Basel)., vol. 12, no. 7, pp. 1–42, 2020, doi: 10.3390/polym12071529.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Inovasi Teknologi Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


