Sistem Pengenalan Wajah Mahasiswa Praktikum Di Laboratorium Teknik Elektro dan Informatika Polmanbabel Menggunakan Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.33504/jitt.v1i1.22Keywords:
Convolutional Neural Network (CNN), Distance, Face RecognitionAbstract
Facial recognition is a type of biometric based on human facial features. Face recognition is very important for an institution such as a university where many students make it difficult for employees to recognize students one by one. This study used students as objects and focused on one laboratory room. The goal is to identify anyone who is in the laboratory room. The Convolutional Neural Network (CNN) method with a webcam is used in this study to recognize the faces of students or anyone who enters the laboratory. The system will report anyone caught by the camera including those who are not recognized. Based on the experimental results, data is obtained that the system can recognize objects well up to a distance of 4 maters and the optimum for 100% accuracy is at a distance of 3 meters. Accuracy will decrease if the distance from the object to the camera is less than 3 meters, which is 93,33% for a distance of 2 meters and 86,67% for a distance of 1 meter.
Downloads
References
I. Q. Mundial, M. S. Ul Hassan, M. I. Tiwana, W. S. Qureshi, dan E. Alanazi, “Towards facial recognition problem in COVID-19 pandemic,” dalam 2020 4th International Conference on Electrical, Telecommunication and Computer Engineering, ELTICOM 2020 - Proceedings, Sep 2020, hlm. 210–214. doi: 10.1109/ELTICOM50775.2020.9230504.
D. Zeng, R. Veldhuis, dan L. Spreeuwers, “A survey of face recognition techniques under occlusion,” IET Biometrics, vol. 10, no. 6. John Wiley and Sons Inc, hlm. 581–606, Nov 01, 2021. doi: 10.1049/bme2.12029.
H. Abhirawa, M. S. Jondri, dan A. Arifianto, “Pengenalan Wajah Menggunakan Convolutional Neural Network Face Recognition Using Convolutional Neural Network.”
M. A. Prastya, “SISTEM PENGENALAN WAJAH MANUSIA MENGGUNAKAN ALGORITMA VIOLA-JONES DAN PRINCIPAL COMPONENT ANALYSIS,” Ubiquitous: Computers and its Applications Journal, vol. 2, no. 2, hlm. 85–92, 2019.
M. Zufar, B. Setiyono, dan S. Si, “CONVOLUTIONAL NEURAL NETWORKS FOR REAL-TIME FACE RECOGNITION.”
S. Pencatatan dkk., “Menggunakan Metode Convolutional Neural Network (CNN) Face Recognition-based Automatic Attendance Recording System in Classroom Using Convolutional Neural Network (CNN) Method,” 2018. [Daring]. Available: https://ejournal.upi.edu/index.php/JATIKOM
P. Studi Teknik Elektronika Politeknik Gajah Tunggal, U. Pencatatan Kehadiran Karyawan, dan A. Rama Mitra, “Perancangan Aplikasi Sistem Pengenalan Wajah Dengan Metode Convolutional Neural Network,” 2021. [Daring]. Available: https://jurnal.poltek-gt.ac.id/index.php/jiti/1
M. Amin Nurdin, R. Cahya Wihandika, dan F. Utaminingrum, “Deteksi Pergerakan Arah Mata menggunakan Convolution Neural Network berdasarkan Facial Landmark,” 2020. [Daring]. Available: http://j-ptiik.ub.ac.id
I. And dan D. Expert, “Perbandingan Identifikasi Wajah Dengan Ekstraksi Fitur Haralick Dan CNN INFORMASI ARTIKEL A B S T R A K,” 2020. [Daring]. Available: http://index.unper.ac.id
S. Ilahiyah dan A. Nilogiri, “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network”.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Inovasi Teknologi Terapan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.