Identifikasi Kandungan Formalin dan Kesegaran Daging Sapi dengan Image Processing

Authors

  • Sayyid Abdul Azis
  • Zulaika Zulaika Politeknik Manufaktur Negeri Bangka Belitung
  • Aan Febriansyah
  • Nur Khasanah

DOI:

https://doi.org/10.33504/jitt.v2i1.201

Keywords:

Meat, Image Processing, YOLO, HCHO Sensors

Abstract

The lack of public understanding in distinguishing between fresh and spoiled meat, coupled with the unrestricted use of formalin, provides opportunities for unscrupulous traders to gain greater profits. Therefore, the development of image processing for beef freshness and formalin identification is necessary. This image processing utilizes the YOLO method, while formalin identification is done using an HCHO sensor. The system was tested every 2 hours, starting from 9:00 AM, revealing that at 9:00 AM, fresh meat was identified with a 87.89% accuracy, at 11:00 AM, fresh meat was identified with a 74.43% accuracy, and at 1:00 PM, spoiled meat was identified with a 38.85% accuracy. The results indicate that the longer the meat is left untreated, the more its freshness diminishes, eventually being identified as spoiled meat. For formalin identification in beef, results from 4 samples show that the longer the meat is exposed to formalin solution, the higher the volatility of the sensor, indicating the presence of formalin in the meat.

Downloads

Download data is not yet available.

References

J. Junaldi, Z. Zulharbi, and W. Lovita, “Alat Pendeteksi Kesegaran Daging Berdasarkan Sensor Bau dan Warna,” Elektron J. Ilm., vol. 11, no. 1, pp. 1–7, 2019, doi: 10.30630/eji.11.1.93.

F. M. Amin, “Identifikasi Citra Daging Ayam Berformalin Menggunakan Metode Fitur Tekstur dan K-Nearest Neighbor (K-NN),” J. Mat. “MANTIK,” vol. 4, no. 1, pp. 68–74, 2018, doi: 10.15642/mantik.2018.4.1.68-74.

A. Prabowo, D. Erwanto, and P. N. Rahayu, “Klasifikasi Kesegaran Daging Sapi Menggunakan Metode Ekstraksi Tekstur GLCM dan KNN Freshness Classification of Beef Using GLCM Texture Extraction Method and KNN,” Jec, vol. 7, no. 1, 2021.

Amin, F. M. (2018). Identifikasi citra daging ayam berformalin menggunakan metode fitur tekstur dan k-nearest neighbor (K-NN). Jurnal Matematika “MANTIK, 4(1), 68-74.

Remaldhi, D., Wahiddin, D., & Cahyana, Y. (2021). Identifikasi Kesegaran Ikan Nila Berdasarkan Warna Insang Menggunakan Algoritma K-Nearest Neighbor (K-NN). Scientific Student Journal for Information, Technology and Science, 2(2), 197-202.

Siswanto, D., Syauqy, D., & Budi, A. S. (2019). Sistem Klasifikasi Ikan Tongkol yang mengandung Formalin dengan Sensor HCHO dan Sensor pH menggunakan Metode K-Nearest Neighbor berbasis Arduino. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(10), 9993-9997.

Putri Anggia, C. (2023). Sistem Perhitungan Kendaraan Menggunakan Algoritma YOLOV5 dan Deepsort.

Ortega, J. (2018). Mastering Python for Networking and Security: Leverage Python scripts and libraries to overcome networking and security issues. Packt Publishing Ltd.

Mitra, A. R. (2021). Perancangan Aplikasi Sistem Pengenalan Wajah Dengan Metode Convolutional Neural Network (CNN) Untuk Pencatatan Kehadiran Karyawan. Jurnal Instrumentasi dan Teknologi Informatika (JITI), 3(1), 1-11.

Pertiwi, S. (2021). Design and Making Formalin Level Detection Tools in Food Using Archuino Uno-Based HCHO Sensors with Notification Through SMS. Kumpulan Karya Ilmiah Mahasiswa Fakultas sains dan Tekhnologi, 1(1), 310-310.

Downloads

Published

28-02-2024

How to Cite

Abdul Azis, S., Zulaika, Z., Febriansyah, A., & Khasanah, N. (2024). Identifikasi Kandungan Formalin dan Kesegaran Daging Sapi dengan Image Processing. Jurnal Inovasi Teknologi Terapan, 2(1), 262–268. https://doi.org/10.33504/jitt.v2i1.201